Get the latest price?

Serie a prueba de balas de cerámica: comparación de los principales materiales cerámicos para la protección contra balas

07-04-2023

Los principales materiales cerámicos que se pueden utilizar como materiales antibalas son oxido de aluminio,carburo de silicio, Carburo de boro,Nitrido de siliconay boruro de titanio. Entre ellos, las cerámicas de óxido de aluminio (Al2O3), las cerámicas de carburo de silicio (SiC) y las cerámicas de carburo de boro (B4C) son las más utilizadas. Las cerámicas antibalas de óxido de aluminio tienen una dureza baja (HRA90) y una densidad alta en comparación con las otras dos, pero son más económicas. Las cerámicas a prueba de balas de carburo de silicio tienen la mayor dureza y el mejor rendimiento entre los tres, pero también son mucho más caras que los otros dos materiales. La dureza de las cerámicas antibalas de carburo de silicio puede alcanzar HRA92, y la densidad es solo el 82% de la de las placas antibalas de óxido de aluminio, con un precio moderado y un uso más amplio.


1. Cerámica de óxido de aluminio.

Las cerámicas de óxido de aluminio son una serie de materiales cerámicos basados ​​en óxido de aluminio de alta temperatura (α-Al2O3) como fase cristalina principal, y α-Al2O3 es la única variante de Al2O3 que existe naturalmente en el mundo. Tiene la estructura más compacta, la reactividad más baja y las mejores propiedades electroquímicas entre todas las variantes y puede permanecer estable a todas las temperaturas.


Propiedades de la cerámica de óxido de aluminio


Propiedad Al2O3Sinterización
Densidad (g/cm3)3.6-3.95
Resistencia a la flexión (Mpa)200-400
Módulo de Young (Gpa)300-450
Resistencia a la fractura (Mpa.m1/2)3.0-4.5
Dureza (Gpa)12-18

                                                                        


Ventajas: Como material cerámico de primera generación en el campo antibalas, el óxido de aluminio no solo es el más fuerte y duro entre todos los óxidos, sino que también tiene buena resistencia a la oxidación, inercia química, bajo costo y es fácil de obtener. Además, los productos sinterizados son ampliamente utilizados en varios vehículos blindados y ropa antibalas militar y policial debido a su superficie lisa, tamaño estable y bajo precio.


Desventajas: Baja resistencia a la flexión y tenacidad a la fractura, y baja resistencia al choque térmico. Además, el rendimiento del óxido de aluminio varía mucho, principalmente según los parámetros del proceso, el contenido de impurezas, el tamaño de las partículas y la temperatura de sinterización. Al mismo tiempo, la alta densidad del óxido de aluminio no puede cumplir con la tendencia de la armadura ligera.


2. Cerámica de carburo de silicio

SiC tiene una estructura cristalina única. Usando uno de los cuatro átomos de carbono como el centro y átomos de silicio como los átomos emparejados, uno de los cuatro electrones más externos se selecciona para emparejarse con el electrón más externo del átomo de carbono central. Por operación cíclica, la estructura final es equivalente a la estructura de tetraedro de diamante compuesta por enlaces Si-C, que exhibe una dureza extremadamente alta. Al mismo tiempo, esta estructura tiene fuertes enlaces covalentes y alta energía de enlace Si-C, lo que hace que los materiales de carburo de silicio tengan las características de alto módulo, alta dureza y alta resistencia específica.



Propiedades de la cerámica de carburo de silicio bajo diferentes procesos de sinterización

Propiedad SICSinterización por prensado en calientePrensado isostático en calienteSinterización por reacciónSinterización por chispa de plasma
Densidad (g/cm3)3.25-3.283.01-3.133.023.12-3.20
Resistencia a la flexión (Mpa)500-730366-950260420-850
Módulo de Young (Gpa)440-450-359420-460
Resistencia a la fractura (Mpa.m1/2)5.0-5.54.51-5.794.003.4-7.0
Dureza (Gpa)2010.5-20.017.2319.8-32.7

Ventajas: es el material cerámico sin óxido más utilizado con alta dureza, solo superado por el diamante, el nitruro de boro cúbico y el carburo de boro. Por su baja densidad y alta dureza, esta cerámica es muy adecuada paraprotección balística, y se encuentra en la zona intermedia entre el óxido de aluminio y el carburo de boro en términos de propiedades mecánicas, propiedades de densidad, propiedades balísticas y costos de aplicación.



Desventajas: La estructura molecular y las características del carburo de silicio determinan su menor tenacidad. Cuando es golpeado por una bala, su fuerza ultra alta puede resistir por completo la enorme energía cinética de la bala y romperla instantáneamente, pero también se agrietará o incluso se romperá en pedazos en el momento del impacto, lo que hace que la placa de cerámica de carburo de silicio solo apto para ciertas áreas de protección antibalas. Sin embargo, muchos investigadores en el campo de la ciencia molecular de los materiales afirman actualmente que la baja tenacidad del carburo de silicio puede compensarse y superarse teóricamente controlando el proceso de sinterización y la preparación de la fibra cerámica. Esto ampliará en gran medida el rango de aplicación del carburo de silicio en el campo de la protección antibalas, convirtiéndolo en un material ideal para la fabricación de equipos antibalas.


3. Carburo de boro cerámico

El cristal de Carburo de Boro pertenece al tipo de estructura romboédrica. En su estructura romboédrica, cada celda unitaria contiene 15 átomos, de los cuales 12 átomos (B11C) forman un icosaedro, formando una estructura espacial, mientras que los tres átomos restantes se combinan para formar una cadena CBC. El icosaedro está conectado a la cadena CBC a través de enlaces covalentes para formar una estructura relativamente estable. Al mismo tiempo, sus elementos constituyentes, el carbono y el boro, tienen propiedades y radios atómicos muy similares, lo que hace que B4C tenga algunas propiedades excelentes que otras cerámicas sin óxido no tienen.


Propiedades del Carburo de Boro bajo diferentes procesos de sinterización


Propiedad B4CSinterización por prensado en calientePrensado isostático en calienteSinterización por reacciónSinterización por chispa de plasma
Densidad (g/cm3)2.45-2.522.42-2.512.48-2.542.43-2.60
Resistencia a la flexión (Mpa)200-500365-627235-321607-627
Módulo de Young (Gpa)440-460393-444330-426403-590
Resistencia a la fractura (Mpa.m1/2)2.0-4.72.4-3.34.1-4.42.8-5.8
Dureza (Gpa)29-3525-3113.4-18.030,5-38,3


Ventajas: dureza a alta temperatura casi constante y buenas propiedades mecánicas. Al mismo tiempo, su densidad es la más baja entre varias cerámicas para armaduras de uso común, y su alto módulo elástico la convierte en una buena opción para armaduras militares y materiales espaciales.

 

Desventajas: Debido a la naturaleza altamente covalente de los enlaces covalentes entre los átomos de boro y carbono, su sinterización es deficiente. Por lo tanto, es necesario utilizar altas temperaturas de sinterización muy cercanas al punto de fusión del material. Estas altas temperaturas dan lugar a poros residuales y posterior espaciamiento de grano, lo que deteriora las propiedades y el rendimiento del material. Por lo tanto, se suele utilizar prensado en caliente o prensado isostático en caliente, lo que conduce a mayores costes de fabricación.


Obtenga el último precio? Le responderemos lo antes posible (dentro de las 12 horas)

Política de privacidad